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Low-energy excitations of Yb4As3 in a magnetic field
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Abstract. We discuss the effects of an applied magnetic field on the low-energy excitations in the low
temperature phase of Yb4As3. We show also why the magnetic interaction of the Yb3+ ions is nearly of
an isotropic Heisenberg spin-1/2 type. A small anisotropy due to an intrachain dipolar interaction leads
to the opening of a gap when a magnetic field is applied. The model agrees with available experimental
data. Simple experiments are suggested in order to further test the present theory.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.30.Ds Spin waves – 75.20.Hr
Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions

At low temperatures the rare-earth pnictide Yb4As3 is
a semimetal with characteristic features of a heavy fermion
system [1,2]. The linear specific heat coefficient is large,
γ ≈ 200 mJ/mol K2, and the spin susceptibility is en-
hanced accordingly. The resistivity is of the Fermi-liquid
type, i.e., ρ(T ) = ρ0 + AT 2 and the ratio A/γ2 is of the
same order of magnitude as for other heavy fermion sys-
tems. The microscopic origin of the large A coefficient is
presently not fully understood. Another feature of the low-
energy phase is a low carrier concentration. Measurements
of the Hall coefficient yield approximately one charge car-
rier per 103 Yb ions when the usual relation between the
two quantities is used. These carriers consist mainly of
As p-holes with a low effective mass. When a magnetic
field is applied a gap in the excitation spectrum seems
to open up. This refers to measurements of the specific
heat [3,4] where it has been found that a field of 4 T leads
to a dramatic decrease of the linear term in the specific
heat below 0.5 K. Several different proposals have been
made to account for this effect [5–7]. They are described
below. Here we introduce an alternative explanation and
discuss a simple experiment which should be able to dis-
criminate between the different underlying physical pic-
tures.

In order to understand the physical issue we have to
recall some of the basic properties of Yb4As3. At high
temperatures the compound has the anti-Th3P4 struc-
ture which is of cubic symmetry (T 6

d ). The Yb ions
(Yb3+:Yb2+ = 1:3) occupy four families of interpene-
trating chains oriented along the diagonals of a cube.
At room temperature a phase transition to a trigonal
low-temperature phase takes place. It is accompanied
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by a charge ordering of the Yb3+ 4f holes [1]. As the
temperature decreases they align in the chains along the
trigonal direction, e.g., 〈111〉 and the system becomes
a semimetal. Since the 4f holes are strongly correlated
the system behaves at low temperatures like one of well
separated spin chains. Indeed, inelastic neutron scatter-
ing (INS) experiments by Iwasa et al. [8] and Kohgi
et al . [9,10] have demonstrated that the magnetic exci-
tations are well described by means of a one-dimensional
isotropic Heisenberg chain, i.e., by des Cloiseaux-Pearson
spectrum [11], ε(q) = 1

2πJeff | sin q|,−π ≤ q ≤ π. They
found Jeff to be ∼ 25 K. Since no magnetic ordering was
observed down to 0.045 K [12] the interchain coupling
must be very weak [5].

The present work aims to shed light on two main prob-
lems: why is the interaction of the ordered Yb3+ ions in
the chains so well-described by an isotropic Heisenberg
Hamiltonian, i.e., without a sizeable anisotropy? What is
the effect of an applied magnetic field on the low-energy
excitation spectrum? As regard the last topic, three mod-
els have been put forward. One is based on intrachain
interactions [5]. By assuming a ratio of J ′/Jeff ≈ 10−4,
for the inter-(J ′) to intra (Jeff) chain coupling constants,
the low temperature specific heat in a magnetic field can
be well described. A detailed analysis based on an easy
plane model fits also the data very well when in addition
to the resulting soliton excitations a weak interchain cou-
pling is assumed [13]. A third model is due to Oshikawa
et al . [6] and links the opening of a gap to an effective
staggered field introduced by an alternating g-tensor and
Dzyaloshinsky-Moriya interaction. With this interesting
model predictions are made for the dependence of the gap
in the excitation spectrum on the direction of the mag-
netic field. The mechanism we want to suggest here is



242 The European Physical Journal B

quite different from the previous cases. A simple specific
heat experiment should be able to discriminate between
the different suggestions.

In order to derive the magnetic interactions in the
Yb3+ chains we start from the Hamiltonian of the 4f
holes. In general, the intra-f band hopping amplitude is
not diagonal with respect to the angular momentum pro-
jections m. However, if the global quantization axis is cho-
sen parallel to the chain axis, the hopping amplitude be-
comes diagonal inm. Indeed, in this case the angular parts
(spherical harmonics (Y m3 )∗ and Ym

′

3 ) of the wave func-
tions located on sites i and j depend on the common polar
angle φ. Thus, integration of the factor exp i(m′ − m)φ
results in Kronecker’s δm,m′ . The choice of the quantiza-
tion axis parallel to all Yb3+ chains significantly simplifies
the initial Hamiltonian:

H = −
∑
〈ij〉

L∑
m=−L

∑
σ=±1/2

t(m) f †imσfjmσ +Hcorr, (1)

where t(m) = t(−m) and 〈ij〉 denotes pairs of nearest
neighbors in the chain. In addition to f -hole hopping
processes within a chain there are also matrix elements
describing hopping between Yb3+ and empty chains.
Eliminating them results in an anisotropic effective inter-
action of f -holes within a Yb3+ chain as well as between
neighboring Yb3+ chains. Both are transmitted via the As
ions and are of similar size. From experiment (see above),
we know that the one between neighboring chains is very
weak [5]. Therefore, we shall neglect those processes here.
Other relevant interactions are contained in Hcorr. They
consist of generalizations of the Hubbard-U term, describ-
ing the ionic charge excitations. They also contain the on-
site spin-orbit coupling in accordance with the Russell-
Saunders coupling scheme. Wave functions of f -electrons
are extremely anisotropic and therefore t depends strongly
on m. In [14], characteristic values of t’s have been roughly
estimated as 50 meV, while a typical Coulomb-like U
term is of order ∼ 10 eV. The spin-orbit coupling is
considerable weaker than the Coulomb energy and is of
order eV.

The interaction between localized 4f holes is derived
by second-order perturbations theory. In doing so we
have to project all L = 3, S = 1/2 states onto the
lowest J multiplet which for Yb3+ is J = 7/2. After a
straightforward calculation we find for the leading term
of the interaction

Hmagn =
∑
〈ij〉

J∑
µ,ν=−J

Tij(µ, µ′)f
†
iµfiνf

†
jνfjµ, (2)

where T (µ, ν) = T (ν, µ) ≡ T (|µ|, |ν|) and µ, ν are pro-
jections of J onto the chain axis. If the axis of quantiza-
tion does not coincide with the chain direction the form
of Hmagn is more complicated. Next we want to show
that for Yb3+ ions (2) reduces to an isotropic Heisen-
berg Hamiltonian. For this purpose the crystalline elec-
tric field (CEF) has to be taken into account. In trigonal
symmetry the 2F7/2 multiplet splits into four doublets.

From INS experiments [9] the excitation energies from
the ground state (GS) doublet are known to be 14, 21
and 29 meV. Since those energies are much larger than
Jeff we have to project Hmagn onto the GS doublet. In
order to find the corresponding GS wavefunctions we use
the CEF Hamiltonian in C6

3v point symmetry which in-
cludes the As ions. This is a simplification which we use
because the true symmetry is C6

3 . We assume that the
dipolar interaction we shall consider here is more impor-
tant than the deviations from the C6

3v symmetry. For the
C3v symmetry the following forms are valid for the four
doublets: αi| ± 7/2〉+ βi| ± 1/2〉+ δi| ∓ 5/2〉, (i = 1, 2, 3)
and | ± 3/2〉. Based on a point-charge model calculation
we exclude the last doublet for being the GS and make for
the GS doublet |+〉, |−〉 the following ansatz

|±〉 = α| ± 7/2〉+ β| ± 1/2〉+ δ| ∓ 5/2〉. (3)

In the next steps the matrix elements of Hmagn

with respect to the GS doublets of neighboring sites
labeled 1 and 2, i.e., |+1,+2〉, |+1,−2〉, |−1,+2〉, and
|−1,−2〉 are determined. The only non-vanishing ones are
〈±1,±2|Hmagn|±1,±2〉 and 〈±1,∓2|Hmagn|∓1,±2〉. From
(3) it follows that those matrix elements are all equal, im-
plying that we deal with an ideal Hamiltonian of state
permutations. We denote this value of the matrix ele-
ment by Jeff/2 and introduce pseudo-spin operators τ±i , τ

z
i

which act on the GS doublet as follows, τ±|∓〉 = |±〉,
τz|±〉 = ± 1

2 |±〉. The effective magnetic exchange Hamil-
tonian is then of the form

Heff = Jeff

∑
〈ij〉

(
τiτj +

1
4

)
. (4)

Its gapless spectrum leads to the observed low tempera-
ture specific heat and the observed large γ value can be
well-explained by the measured size of Jeff .

Let us now express the Zeeman energy HZe =
−gµBH · J in terms of the pseudo-spin τ . A straightfor-
ward calculation yields the following matrix elements:

〈±|Jz|±〉 = ±1
2

(7α2 + β2 − 5δ2) = ±1
2
j1,

〈±|Jx|∓〉 = ±i 〈±|Jy|∓〉 =
√

7αδ + 2β2 =
1
2
j2. (5)

The Zeeman term can therefore be written in the compact
form HZe = −gµB

∑
i(j1Hzτ

z
i + j2(Hxτ

x
i +Hyτ

y
i )) which

clearly demonstrates that the effect of the magnetic field
depends on its direction relative to that of the chains.
Despite the magnetic field anisotropy the spectrum re-
mains gapless provided the Zeeman energy remains less
than Jeff so that a transition to a ferromagnetic state can
be excluded. The Bethe ansatz solution shows that the
excitation energy goes to zero at a wave vector qH which
depends on H and shifts continuously from 0 to π as the
field is increased (see for example [15]).

A gap in the excitation spectrum opens up though,
when the weak magnetic dipolar interaction within a chain
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is taken into account. It is of the form

Hdip = g2µ2
B

∑
i<j

Ji · Jj − 3(Ji · n)(Jj · n)
|Ri −Rj|3

, (6)

where n = (Ri − Rj)/|Ri −Rj | and the Ri denote the
positions of the Yb3+ ions. We compute the non vanishing
matrix elements as enlisted

〈±1,±2|Jz1Jz2 |±1,±2〉 =
1
4
j2
1 ,

〈∓1,±2|Jz1Jz2 |∓1,±2〉 = −1
4
j2
1 ,

〈±1,∓2|(J+
1 J
−
2 + J−1 J

+
2 )|∓1,±2〉 = j2

2 . (7)

With their help we can write the interaction pro-
jected onto the respective GS doublets as follows:
g2µ2

B

∑
i<j(−2j2

1τ
z
1 τ

z
2 + j2

2(τx1 τ
x
2 + τy1 τ

y
2 ))/a3 where a is

the distance between neighboring Yb3+ ions. This results
in the following interaction Hamiltonian of the Yb3+ ions
in the chain

H =
∑
〈ij〉
{(1− λ1)τzi τ

z
j + (1 + λ2)(τxi τ

x
j + τyi τ

y
j )

−
∑
i

(hxτxi + hyτ
y
i + hzτ

z
i ) (8)

with λ1 = 2g2µ2
Bj

2
1 /(Jeffa

3), λ2 = g2µ2
Bj

2
2 /(Jeffa

3),
hz = gµBHzj1/Jeff , hx = gµBHxj2/Jeff , and hy =
gµBHyj2/Jeff . Until now we have not discussed possible
RKKY type of interactions between the Yb3+ ions. Since
the carrier concentration is so low and since the specific
heat behaves similar in the insulator Yb4(As0.6P0.4)3 as it
does the semimetal Yb4As3 they may be safely neglected.

In order to determine j1 and j2 one can use the work
of Griffiths [16] on the 1D antiferromagnetic Heisenberg
model. A couple of equations

h = gµBHzj1/Jeff and Mz = gµBj1〈τ〉

can be transformed to

HzMz/Jeff = h〈τ〉,

which allows us to unambiguously identify an experimen-
tal point (Mz,Hz) with its position on the Griffiths’ curve,
and then, to determine j1. A similar procedure can be
done for the x-direction, i.e., for j2, too. The knowledge
of j-values, for instance, will allow to re-plot the whole
Griffiths’ curve from magnetic measurements in order to
check how far Yb4As3 follows one-dimensional tendencies.

Unfortunately, monocrystal measurements have been
done for one direction only [9], that is insufficient to de-
termine both j1 and j2. However, by using a point-charge
model for the CEF set up by the octahedral ligands one
can estimate that j1 ≈ j2 ≈ 3.2. If we assume that j1
and j2 are nearly equal we obtain from the magnetiza-
tion measurements j1 ≈ j2 ≈ 3 in an agreement with the
point-charge model calculation. Then, the anisotropy pa-
rameters in (8) are λ1 ≈ 2λ2 ≈ 10−2. The small anisotropy
is in an agreement with INS experiments [10].
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Fig. 1. The linear term of the specific heat for polycrys-
talline Yb4As3 calculated from spin excitations (9). The low-
temperature value of γ at h = 0 is taken as a unit. Jeff = 25 K,
λ1 = 2λ2 = 0.01, j1 = j2 = 3. B = 1 T (a), B = 2 T (b),
B = 4 T (c), and B = 8 T (d).

The low temperature thermodynamics of the one-
dimensional Heisenberg chain can be calculated in two
different but equivalent ways: either as the thermodynam-
ics of an ideal Bose gas of magnons with the dispersion
ε(p) = vp, or of an ideal Fermi gas of spin 1

2 spinons
with the same dispersion. In the present work we choose
the Bose gas approach. The dispersion of the effective
Hamiltonian (8) is investigated by means of the spin-wave
theory. Assuming a Néel state for the chain and a small
anisotropy we obtain (in units of Jeff):

ε2(k) = x2(1 +Gc2) + y2(1−Gc2) + z2(1 + c2)±
c
√

(x2(1 +G) + y2(1−G) + 2z2)2 − 4x2y2(1−G2) (9)

where z = hz/(1+G), x = hx/2, y = 1−x2−z2, G = 1−2λ,
λ = (λ1 + λ2)/2, and c = cos k. The dipolar interaction
splits the magnetic excitation spectrum of the chain into
two branches. But in zero field the spectrum remains gap-
less. The same holds true when the magnetic field is along
the chain axis. But a field component perpendicular to
the chain, i.e., in the easy plane induces a gap in the
spectrum. The two branches yield the following gaps (9):
∆1 = hx and ∆2 = 2

√
λ(1− h2

x/4). Therefore we ex-
pect that the specific heat of a single Yb4As3 crystal be-
haves very anisotropic in an applied field. This suggests
the following scenario for the low temperature specific
heat C = γT ; (i) at small field hx it is ∆1 < ∆2 and
the smaller gap is linear in the magnetic field; (ii) as the
field increases∆1 becomes eventually larger than ∆2. This
should be the case for fields between 2 T and 4 T when
the above parameter values are used. At higher fields the
specific heat should change little when the temperature is
smaller than ∆2 which amounts to about 2 K, because ∆2

changes only slowly with hx. There is some reduction in
γ at higher temperatures since ∆1 continues to increase
linearly in hx; (iii) at very high fields ∆2 starts decreasing
and eventually goes to zero at hx = 2 (about 25 T). This
is practically the same field at which the transition to the
ferromagnetic state should take place. Since the spectrum
is almost quadratic in the vicinity of q = 0 and q = π at
hx = 2, γ starts growing ∝ T−1/2, reaching ∼ λ−1/2 at its
maximum.
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Fig. 2. The linear term of the specific heat for polycrystalline
Yb4As3 at high magnetic fields, dimensionless units are used:
(a) h = 1.985, (b) h = 1.9, and (c) h = 1.7 (real fields are
around ∼ 25 T). Other parameters are the same as in Figure 1.

In order to make detailed predictions we have calcu-
lated numerically γ for polycrystalline Yb4As3 by taking
an average over all directions. Thereby the features dis-
cussed above are smoothened out a bit. In Figure 1 we
show the results for γ when the magnetic field is relatively
small. The region between curves a and b corresponds to
the case ∆1 < ∆2. The results are in satisfactory agree-
ment with the experimental data [4]. Curves c and d are
very close to each other at low T since the cross-over to
∆1 > ∆2 is taking place. A hint of that cross-over was
recently observed in [7] where a saturation of the gap
at fields higher than 4 T was detected by specific heat
measurements. The behavior of the latter at high fields is
shown in Figure 2.

We suggest therefore specific heat measurements on
Yb4As3 in fields up to 30 T. They should be able to con-
firm or refute the explanation suggested here for the open-
ing of a gap in the excitation spectrum by an applied
field. Such measurements should first show a depletion of
the low energy excitation as the field strength increases.
At high fields the gap should close again and the specific
heat at low temperatures should become even larger than
in the absence of a field.

We would like to thank K. Ueda for discussions and providing
us with a preprint of his work prior to publication.
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